Matching catalogs based on membership (detailed) ================================================ Here we show the specific steps of matching two catalogs based on proximity .. code:: ipython3 %load_ext autoreload %autoreload 2 ClCatalogs ---------- Given some input data .. code:: ipython3 import numpy as np from astropy.table import Table input1 = Table({'ID': ['CL0a', 'CL1a', 'CL2a', 'CL3a', 'CL4a']}) input1['MASS'] = 1e14*np.arange(1, 6)*10 input2 = Table({'ID': ['CL0b', 'CL1b', 'CL2b', 'CL3b']}) input2['MASS'] = 1e14*np.arange(1, 5)*10 display(input1) display(input2) input1_mem = Table( {'ID':[ 'MEM0', 'MEM1', 'MEM2', 'MEM3', 'MEM4', 'MEM5', 'MEM6', 'MEM7', 'MEM8', 'MEM9', 'MEM10', 'MEM11', 'MEM12', 'MEM13', 'MEM14'], 'ID_CLUSTER': [ 'CL0a', 'CL0a', 'CL0a', 'CL0a', 'CL0a', 'CL1a', 'CL1a', 'CL1a', 'CL1a', 'CL2a', 'CL2a', 'CL2a', 'CL3a', 'CL3a', 'CL4a'], }) input2_mem = Table( {'ID':[ 'MEM0', 'MEM1', 'MEM2', 'MEM3', 'MEM4', 'MEM5', 'MEM6', 'MEM7', 'MEM8', 'MEM9', 'MEM10', 'MEM11', 'MEM12', 'MEM13'], 'ID_CLUSTER': [ 'CL3b', 'CL0b', 'CL0b', 'CL0b', 'CL0b', 'CL1b', 'CL1b', 'CL1b', 'CL1b', 'CL2b', 'CL2b', 'CL2b', 'CL3b', 'CL3b'], }) input1_mem['RA'] = np.arange(len(input1_mem))*10.0 input2_mem['RA'] = np.arange(len(input2_mem))*10.0 input1_mem['DEC'] = 0.0 input2_mem['DEC'] = 0.0 input1_mem['Z'] = 0.1 input2_mem['Z'] = 0.1 input1_mem['PMEM'] = 1.0 input2_mem['PMEM'] = 1.0 display(input1_mem) display(input2_mem) .. raw:: html
Table length=5
IDMASS
str4float64
CL0a1000000000000000.0
CL1a2000000000000000.0
CL2a3000000000000000.0
CL3a4000000000000000.0
CL4a5000000000000000.0
.. raw:: html
Table length=4
IDMASS
str4float64
CL0b1000000000000000.0
CL1b2000000000000000.0
CL2b3000000000000000.0
CL3b4000000000000000.0
.. raw:: html
Table length=15
IDID_CLUSTERRADECZPMEM
str5str4float64float64float64float64
MEM0CL0a0.00.00.11.0
MEM1CL0a10.00.00.11.0
MEM2CL0a20.00.00.11.0
MEM3CL0a30.00.00.11.0
MEM4CL0a40.00.00.11.0
MEM5CL1a50.00.00.11.0
MEM6CL1a60.00.00.11.0
MEM7CL1a70.00.00.11.0
MEM8CL1a80.00.00.11.0
MEM9CL2a90.00.00.11.0
MEM10CL2a100.00.00.11.0
MEM11CL2a110.00.00.11.0
MEM12CL3a120.00.00.11.0
MEM13CL3a130.00.00.11.0
MEM14CL4a140.00.00.11.0
.. raw:: html
Table length=14
IDID_CLUSTERRADECZPMEM
str5str4float64float64float64float64
MEM0CL3b0.00.00.11.0
MEM1CL0b10.00.00.11.0
MEM2CL0b20.00.00.11.0
MEM3CL0b30.00.00.11.0
MEM4CL0b40.00.00.11.0
MEM5CL1b50.00.00.11.0
MEM6CL1b60.00.00.11.0
MEM7CL1b70.00.00.11.0
MEM8CL1b80.00.00.11.0
MEM9CL2b90.00.00.11.0
MEM10CL2b100.00.00.11.0
MEM11CL2b110.00.00.11.0
MEM12CL3b120.00.00.11.0
MEM13CL3b130.00.00.11.0
Create two ``ClCatalog`` objects, they have the same properties of ``astropy`` tables with additional functionality. For the membership matching, the main columns to be included are: - ``id`` - must correspond to ``id_cluster`` in the cluster member catalog. - ``mass`` (or mass proxy) - necessary for proxity matching if ``shared_member_fraction`` used as preference criteria for unique matches, default use. All of the columns can be added when creating the ``ClCatalog`` object passing them as keys: :: cat = ClCatalog('Cat', ra=[0, 1]) or can also be added afterwards: :: cat = ClCatalog('Cat') cat['ra'] = [0, 1] .. code:: ipython3 from clevar.catalog import ClCatalog c1 = ClCatalog('Cat1', id=input1['ID'], mass=input1['MASS']) c2 = ClCatalog('Cat2', id=input2['ID'], mass=input2['MASS']) # Format for nice display c1['mass'].info.format = '.2e' c2['mass'].info.format = '.2e' display(c1) display(c2) .. raw:: html Cat1
tags: id(id), mass(mass)
Radius unit: None
ClData length=5
idmassmt_selfmt_othermt_multi_selfmt_multi_other
str4float64objectobjectobjectobject
CL0a1.00e+15NoneNone[][]
CL1a2.00e+15NoneNone[][]
CL2a3.00e+15NoneNone[][]
CL3a4.00e+15NoneNone[][]
CL4a5.00e+15NoneNone[][]
.. raw:: html Cat2
tags: id(id), mass(mass)
Radius unit: None
ClData length=4
idmassmt_selfmt_othermt_multi_selfmt_multi_other
str4float64objectobjectobjectobject
CL0b1.00e+15NoneNone[][]
CL1b2.00e+15NoneNone[][]
CL2b3.00e+15NoneNone[][]
CL3b4.00e+15NoneNone[][]
The members can be added to the cluster object using the ``add_members`` function. It has a similar instanciating format of a ``ClCatalog`` object, where the columns are added by keyword arguments (the key ``id_cluster`` is always necessary and must correspond to ``id`` in the main cluster catalog). For details see XXX: .. code:: ipython3 from clevar.catalog import MemCatalog c1.add_members(id=input1_mem['ID'], id_cluster=input1_mem['ID_CLUSTER'], ra=input1_mem['RA'], dec=input1_mem['DEC'], z=input1_mem['Z'], pmem=input1_mem['PMEM']) c2.add_members(id=input2_mem['ID'], id_cluster=input2_mem['ID_CLUSTER'], ra=input2_mem['RA'], dec=input2_mem['DEC'], z=input2_mem['Z'], pmem=input2_mem['PMEM']) display(c1.members) display(c2.members) .. raw:: html members
tags: id(id), id_cluster(id_cluster), ra(ra), dec(dec), z(z), pmem(pmem)
ClData length=15
idid_clusterradeczpmemind_cl
str5str4float64float64float64float64int64
MEM0CL0a0.00.00.11.00
MEM1CL0a10.00.00.11.00
MEM2CL0a20.00.00.11.00
MEM3CL0a30.00.00.11.00
MEM4CL0a40.00.00.11.00
MEM5CL1a50.00.00.11.01
MEM6CL1a60.00.00.11.01
MEM7CL1a70.00.00.11.01
MEM8CL1a80.00.00.11.01
MEM9CL2a90.00.00.11.02
MEM10CL2a100.00.00.11.02
MEM11CL2a110.00.00.11.02
MEM12CL3a120.00.00.11.03
MEM13CL3a130.00.00.11.03
MEM14CL4a140.00.00.11.04
.. raw:: html members
tags: id(id), id_cluster(id_cluster), ra(ra), dec(dec), z(z), pmem(pmem)
ClData length=14
idid_clusterradeczpmemind_cl
str5str4float64float64float64float64int64
MEM0CL3b0.00.00.11.03
MEM1CL0b10.00.00.11.00
MEM2CL0b20.00.00.11.00
MEM3CL0b30.00.00.11.00
MEM4CL0b40.00.00.11.00
MEM5CL1b50.00.00.11.01
MEM6CL1b60.00.00.11.01
MEM7CL1b70.00.00.11.01
MEM8CL1b80.00.00.11.01
MEM9CL2b90.00.00.11.02
MEM10CL2b100.00.00.11.02
MEM11CL2b110.00.00.11.02
MEM12CL3b120.00.00.11.03
MEM13CL3b130.00.00.11.03
The catalogs can also be read directly from files, for more details see catalogs.ipynb. Matching -------- Import the ``MembershipMatch`` and create a object for matching .. code:: ipython3 from clevar.match import MembershipMatch mt = MembershipMatch() Prepare the matching object ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Before matching the clusters it is necessary to match the members catalogs and then filling the clusters with information about of the shared members. The matching of members can be done by ``id`` if both member catalogs share the same ``id``\ s or by angular proximity. The first step is to prepare each catalog with the matching configuration: - ``delta_z``: Defines redshift window for matching. The possible values are: - ``'cat'``: uses redshift properties of the catalog - ``'spline.filename'``: interpolates data in ``'filename'`` assuming (z, zmin, zmax) format - ``float``: uses ``delta_z*(1+z)`` - ``None``: does not use z - ``match_radius``: Radius of the catalog to be used in the matching. If ``'cat'`` uses the radius in the catalog, else must be in format ``'value unit'``. (ex: ``'1 arcsec'``, ``'1 Mpc'``) In this case, because one of the configuraion radius has physical units, we also need a cosmology (``cosmo``) object to convert it to angular size (this is done internally). To match the members by ``id``, just run the function: .. code:: ipython3 %%time mt.match_members(c1.members, c2.members, method='id') .. parsed-literal:: 28 members were matched. CPU times: user 404 µs, sys: 634 µs, total: 1.04 ms Wall time: 1.03 ms To match the members by angular proximity you also have to provide: - ``radius``\ (``str``, ``None``). Radius for matching, with format ``'value unit'`` (ex: ``1 arcsec``, ``1 Mpc``). - ``cosmo``\ (``clevar.Cosmology``, ``None``). Cosmology object for when radius has physical units. Then call the same function with these arguments .. code:: ipython3 from clevar.cosmology import AstroPyCosmology mt.match_members(c1.members, c2.members, method='angular_distance', radius='0.1 kpc', cosmo=AstroPyCosmology()) .. parsed-literal:: ## ClCatalog 1 ## Prep mt_cols * zmin|zmax set to -1|10 * ang radius from set scale ## ClCatalog 2 ## Prep mt_cols * zmin|zmax set to -1|10 * ang radius from set scale ## Multiple match (catalog 1) Finding candidates (members) * 14/15 objects matched. ## Multiple match (catalog 2) Finding candidates (members) * 14/14 objects matched. ## Finding unique matches of catalog 1 Unique Matches (members) * 14/15 objects matched. ## Finding unique matches of catalog 2 Unique Matches (members) * 14/14 objects matched. Cross Matches (members) * 14/15 objects matched. Cross Matches (members) * 14/14 objects matched. 28 members were matched. This function adds a ``matched_mems`` attribute to your matching object (``mt.matched_mems`` in this case) that contains the indices of the matched members. This attribute can be saved and loaded so you don’t have to redo this step. Just use the functions: .. code:: ipython3 mt.save_matched_members(filename='mem_mt.txt', overwrite=False) mt.load_matched_members(filename='mem_mt.txt') Now we fill the catalogs with the information regarding the matched members. In this step, each cluster catalog will have a ``ClData`` table in its ``mt_input`` attibute with the number of members in each cluster (``nmem``) and a dictionary containing the number of shaded objects with the clusters of the other catalog (``shared_mems``). If ``pmem`` is provided to the members, these quantities are computed as: .. raw:: html
:math:`nmem=\sum_{cluster\;members} Pmem_i` .. raw:: html
.. raw:: html
:math:`shared\_mems=\sum_{shared\;members} Pmem_i` .. raw:: html
.. code:: ipython3 mt.fill_shared_members(c1, c2) .. code:: ipython3 display(c1.mt_input) display(c2.mt_input) .. raw:: html
ClData length=5
share_memsnmem
objectfloat64
{'CL3b': 1.0, 'CL0b': 4.0}5.0
{'CL1b': 4.0}4.0
{'CL2b': 3.0}3.0
{'CL3b': 2.0}2.0
{}1.0
.. raw:: html
ClData length=4
share_memsnmem
objectfloat64
{'CL0a': 4.0}4.0
{'CL1a': 4.0}4.0
{'CL2a': 3.0}3.0
{'CL3a': 2.0, 'CL0a': 1.0}3.0
Again, these results can be saved and loaded so you don’t have to redo this step. Just use the functions: .. code:: ipython3 mt.save_shared_members(c1, c2, fileprefix='mem_share') mt.load_shared_members(c1, c2, fileprefix='mem_share') Once this step is done, you can actually start matching the clusters. Multiple matching ~~~~~~~~~~~~~~~~~ The next step is to match the catalogs and store all candidates that pass the matching criteria. .. code:: ipython3 %%time mt.multiple(c1, c2) mt.multiple(c2, c1) .. parsed-literal:: Finding candidates (Cat1) * 4/5 objects matched. Finding candidates (Cat2) * 4/4 objects matched. CPU times: user 1.98 ms, sys: 0 ns, total: 1.98 ms Wall time: 1.86 ms This will fill the ``mt_multi_self`` and ``mt_multi_other`` columns: .. code:: ipython3 display(c1) display(c2) .. raw:: html Cat1
tags: id(id), mass(mass)
Radius unit: None
ClData length=5
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othershare_memsnmem
str4float64objectobjectobjectobjectobjectfloat64
CL0a1.00e+15NoneNone['CL0b', 'CL3b']['CL0b', 'CL3b']{'CL3b': 1.0, 'CL0b': 4.0}5.0
CL1a2.00e+15NoneNone['CL1b']['CL1b']{'CL1b': 4.0}4.0
CL2a3.00e+15NoneNone['CL2b']['CL2b']{'CL2b': 3.0}3.0
CL3a4.00e+15NoneNone['CL3b']['CL3b']{'CL3b': 2.0}2.0
CL4a5.00e+15NoneNone[][]{}1.0
.. raw:: html Cat2
tags: id(id), mass(mass)
Radius unit: None
ClData length=4
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othershare_memsnmem
str4float64objectobjectobjectobjectobjectfloat64
CL0b1.00e+15NoneNone['CL0a']['CL0a']{'CL0a': 4.0}4.0
CL1b2.00e+15NoneNone['CL1a']['CL1a']{'CL1a': 4.0}4.0
CL2b3.00e+15NoneNone['CL2a']['CL2a']{'CL2a': 3.0}3.0
CL3b4.00e+15NoneNone['CL3a', 'CL0a']['CL3a', 'CL0a']{'CL3a': 2.0, 'CL0a': 1.0}3.0
Unique matching ~~~~~~~~~~~~~~~ Once all candidates are stored in each catalog, we can find the best candidates. You can also pass the argument: - ``preference``: In cases where there are multiple matched, how the best candidate will be chosen. Options are: ``'more_massive'``, ``'angular_proximity'``, ``'redshift_proximity'``, ``'shared_member_fraction'`` (default value). .. code:: ipython3 %%time mt.unique(c1, c2, preference='shared_member_fraction') mt.unique(c2, c1, preference='shared_member_fraction') .. parsed-literal:: Unique Matches (Cat1) * 4/5 objects matched. Unique Matches (Cat2) * 4/4 objects matched. CPU times: user 695 µs, sys: 919 µs, total: 1.61 ms Wall time: 1.56 ms This will fill the matching columns: - ``mt_self``: Best candidate found - ``mt_other``: Best candidate found by the other catalog - ``mt_frac_self``: Fraction of shared members with the best candidate found - ``mt_frac_other``: Fraction of shared members by the best candidate found by the other catalog, relative to the other catalog If ``pmem`` is present in the members catalogs, the shared fractions are computed by: .. raw:: html

.. raw:: html
:math:`\frac{\sum_{shared\;members}Pmem_i}{\sum_{cluster\;members}Pmem_i}` .. raw:: html
.. raw:: html

.. code:: ipython3 display(c1) display(c2) .. raw:: html Cat1
tags: id(id), mass(mass)
Radius unit: None
ClData length=5
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othermt_frac_selfmt_frac_othershare_memsnmem
str4float64objectobjectobjectobjectfloat64float64objectfloat64
CL0a1.00e+15CL0bCL0b['CL0b', 'CL3b']['CL0b', 'CL3b']0.81.0{'CL3b': 1.0, 'CL0b': 4.0}5.0
CL1a2.00e+15CL1bCL1b['CL1b']['CL1b']1.01.0{'CL1b': 4.0}4.0
CL2a3.00e+15CL2bCL2b['CL2b']['CL2b']1.01.0{'CL2b': 3.0}3.0
CL3a4.00e+15CL3bCL3b['CL3b']['CL3b']1.00.6666666666666666{'CL3b': 2.0}2.0
CL4a5.00e+15NoneNone[][]0.00.0{}1.0
.. raw:: html Cat2
tags: id(id), mass(mass)
Radius unit: None
ClData length=4
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othermt_frac_othermt_frac_selfshare_memsnmem
str4float64objectobjectobjectobjectfloat64float64objectfloat64
CL0b1.00e+15CL0aCL0a['CL0a']['CL0a']0.81.0{'CL0a': 4.0}4.0
CL1b2.00e+15CL1aCL1a['CL1a']['CL1a']1.01.0{'CL1a': 4.0}4.0
CL2b3.00e+15CL2aCL2a['CL2a']['CL2a']1.01.0{'CL2a': 3.0}3.0
CL3b4.00e+15CL3aCL3a['CL3a', 'CL0a']['CL3a', 'CL0a']1.00.6666666666666666{'CL3a': 2.0, 'CL0a': 1.0}3.0
Cross matching ~~~~~~~~~~~~~~ If you want to make sure the same pair was found in both directions: .. code:: ipython3 c1.cross_match() c2.cross_match() This will fill the ``mt_cross`` column: .. code:: ipython3 display(c1) display(c2) .. raw:: html Cat1
tags: id(id), mass(mass)
Radius unit: None
ClData length=5
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othermt_frac_selfmt_frac_othermt_crossshare_memsnmem
str4float64objectobjectobjectobjectfloat64float64objectobjectfloat64
CL0a1.00e+15CL0bCL0b['CL0b', 'CL3b']['CL0b', 'CL3b']0.81.0CL0b{'CL3b': 1.0, 'CL0b': 4.0}5.0
CL1a2.00e+15CL1bCL1b['CL1b']['CL1b']1.01.0CL1b{'CL1b': 4.0}4.0
CL2a3.00e+15CL2bCL2b['CL2b']['CL2b']1.01.0CL2b{'CL2b': 3.0}3.0
CL3a4.00e+15CL3bCL3b['CL3b']['CL3b']1.00.6666666666666666CL3b{'CL3b': 2.0}2.0
CL4a5.00e+15NoneNone[][]0.00.0None{}1.0
.. raw:: html Cat2
tags: id(id), mass(mass)
Radius unit: None
ClData length=4
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othermt_frac_othermt_frac_selfmt_crossshare_memsnmem
str4float64objectobjectobjectobjectfloat64float64objectobjectfloat64
CL0b1.00e+15CL0aCL0a['CL0a']['CL0a']0.81.0CL0a{'CL0a': 4.0}4.0
CL1b2.00e+15CL1aCL1a['CL1a']['CL1a']1.01.0CL1a{'CL1a': 4.0}4.0
CL2b3.00e+15CL2aCL2a['CL2a']['CL2a']1.01.0CL2a{'CL2a': 3.0}3.0
CL3b4.00e+15CL3aCL3a['CL3a', 'CL0a']['CL3a', 'CL0a']1.00.6666666666666666CL3a{'CL3a': 2.0, 'CL0a': 1.0}3.0
Save and Load ------------- The results of the matching can easily be saved and load using ``ClEvaR`` tools: .. code:: ipython3 mt.save_matches(c1, c2, out_dir='temp', overwrite=True) .. code:: ipython3 mt.load_matches(c1, c2, out_dir='temp') display(c1) display(c2) .. parsed-literal:: Cat1 << ClEvar used in matching: 0.13.2 >> * Total objects: 5 * multiple (self): 4 * multiple (other): 4 * unique (self): 4 * unique (other): 4 * cross: 4 Cat2 << ClEvar used in matching: 0.13.2 >> * Total objects: 4 * multiple (self): 4 * multiple (other): 4 * unique (self): 4 * unique (other): 4 * cross: 4 .. raw:: html Cat1
tags: id(id), mass(mass)
Radius unit: None
ClData length=5
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othermt_frac_selfmt_frac_othermt_crossshare_memsnmem
str4float64objectobjectobjectobjectfloat64float64objectobjectfloat64
CL0a1.00e+15CL0bCL0b['CL0b', 'CL3b']['CL0b', 'CL3b']0.81.0CL0b{'CL3b': 1.0, 'CL0b': 4.0}5.0
CL1a2.00e+15CL1bCL1b['CL1b']['CL1b']1.01.0CL1b{'CL1b': 4.0}4.0
CL2a3.00e+15CL2bCL2b['CL2b']['CL2b']1.01.0CL2b{'CL2b': 3.0}3.0
CL3a4.00e+15CL3bCL3b['CL3b']['CL3b']1.00.6666666666666666CL3b{'CL3b': 2.0}2.0
CL4a5.00e+15NoneNone[][]0.00.0None{}1.0
.. raw:: html Cat2
tags: id(id), mass(mass)
Radius unit: None
ClData length=4
mt_input
idmassmt_selfmt_othermt_multi_selfmt_multi_othermt_frac_othermt_frac_selfmt_crossshare_memsnmem
str4float64objectobjectobjectobjectfloat64float64objectobjectfloat64
CL0b1.00e+15CL0aCL0a['CL0a']['CL0a']0.81.0CL0a{'CL0a': 4.0}4.0
CL1b2.00e+15CL1aCL1a['CL1a']['CL1a']1.01.0CL1a{'CL1a': 4.0}4.0
CL2b3.00e+15CL2aCL2a['CL2a']['CL2a']1.01.0CL2a{'CL2a': 3.0}3.0
CL3b4.00e+15CL3aCL3a['CL3a', 'CL0a']['CL3a', 'CL0a']1.00.6666666666666666CL3a{'CL3a': 2.0, 'CL0a': 1.0}3.0
Getting Matched Pairs --------------------- There is functionality inbuilt in ``clevar`` to plot some results of the matching, such as: - Recovery rates - Distances (anguar and redshift) of cluster centers - Scaling relations (mass, redshift, …) for those cases, check the match_metrics.ipynb and match_metrics_advanced.ipynb notebooks. If those do not provide your needs, you can get directly the matched pairs of clusters: .. code:: ipython3 from clevar.match import get_matched_pairs mt1, mt2 = get_matched_pairs(c1, c2, 'cross') These will be catalogs with the corresponding matched pairs: .. code:: ipython3 import pylab as plt plt.scatter(mt1['mass'], mt2['mass']) .. parsed-literal:: .. image:: membership_matching_detailed_files/membership_matching_detailed_42_1.png Members of matched pairs ~~~~~~~~~~~~~~~~~~~~~~~~ The members also carry the information on the matched clusters. The column ``match`` shows to which clusters of the other catalog this member also belongs. The column ``in_mt_sample`` says if those clusters are presented in the matched sample: .. code:: ipython3 mt1.members .. raw:: html members
tags: id(id), id_cluster(id_cluster), ra(ra), dec(dec), z(z), pmem(pmem)
ClData length=14
idid_clusterradeczpmemind_clmatchmt_selfmt_othermt_multi_selfmt_multi_othermt_crossin_mt_sample
str5str4float64float64float64float64int64objectobjectobjectobjectobjectobjectbool
MEM0CL0a0.00.00.11.00['CL3b']MEM0MEM0['MEM0']['MEM0']MEM0True
MEM1CL0a10.00.00.11.00['CL0b']MEM1MEM1['MEM1']['MEM1']MEM1True
MEM2CL0a20.00.00.11.00['CL0b']MEM2MEM2['MEM2']['MEM2']MEM2True
MEM3CL0a30.00.00.11.00['CL0b']MEM3MEM3['MEM3']['MEM3']MEM3True
MEM4CL0a40.00.00.11.00['CL0b']MEM4MEM4['MEM4']['MEM4']MEM4True
MEM5CL1a50.00.00.11.01['CL1b']MEM5MEM5['MEM5']['MEM5']MEM5True
MEM6CL1a60.00.00.11.01['CL1b']MEM6MEM6['MEM6']['MEM6']MEM6True
MEM7CL1a70.00.00.11.01['CL1b']MEM7MEM7['MEM7']['MEM7']MEM7True
MEM8CL1a80.00.00.11.01['CL1b']MEM8MEM8['MEM8']['MEM8']MEM8True
MEM9CL2a90.00.00.11.02['CL2b']MEM9MEM9['MEM9']['MEM9']MEM9True
MEM10CL2a100.00.00.11.02['CL2b']MEM10MEM10['MEM10']['MEM10']MEM10True
MEM11CL2a110.00.00.11.02['CL2b']MEM11MEM11['MEM11']['MEM11']MEM11True
MEM12CL3a120.00.00.11.03['CL3b']MEM12MEM12['MEM12']['MEM12']MEM12True
MEM13CL3a130.00.00.11.03['CL3b']MEM13MEM13['MEM13']['MEM13']MEM13True
Outputing matched catalogs -------------------------- To save the current catalogs, you can use the ``write`` inbuilt function: .. code:: ipython3 c1.write('c1_temp.fits', overwrite=True) This will allow you to save the catalog with its current labels and matching information. Outputing matching information to original catalogs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Assuming your input data came from initial files, ``clevar`` also provides functions create output files that combine all the information on them with the matching results. To add the matching information to an input catalog, use: :: from clevar.match import output_catalog_with_matching output_catalog_with_matching('input_catalog.fits', 'output_catalog.fits', c1) - note: ``input_catalog.fits`` must have the same number of rows that ``c1``. To create a matched catalog containig all columns of both input catalogs, use: :: from clevar.match import output_matched_catalog output_matched_catalog('input_catalog1.fits', 'input_catalog2.fits', 'output_catalog.fits', c1, c2, matching_type='cross') where ``matching_type`` must be ``cross``, ``cat1`` or ``cat2``. - note: ``input_catalog1.fits`` must have the same number of rows that ``c1`` (and the same for ``c2``).