
Is My Code Good Enough?
Improving software through code review.

Mike Jarvis
February 5, 2018

LSST DESC DE School

How do you know if your code is good?

How do you know if your code is good?
1.Try it out

• Run it on different kinds of data.

• Validate it on runs with simulated data.

2.Tests

• Unit tests check each component for accuracy, reliability, etc.

• Integration tests to check that parts work together well.

3.Code Review

What is a code review?
• A developer submits code changes for review.

• One or more reviewers read the code and comment, typically asking
for modifications.

• The developer responds either by changing the code appropriately
or replying why those suggestions are not appropriate.

• Once the reviewers are satisfied, the code is merged into the main
line (e.g. master branch).

• GitHub makes all of these steps very easy.

https://github.com/GalSim-developers/GalSim/pulls

https://github.com/GalSim-developers/GalSim/pull/826

Why do code reviews?

Why do code reviews?
• Helps find errors in the code.

• Encourages developers to be more thorough in the first place.

• Ensures that code base has a fairly consistent style.

• Helps developers learn coding techniques from others on the team.

• Spreads familiarity with the code base. At least 2 people have
looked in detail at any given piece of the code.

• Saves time in the long run.

What kinds of errors?

Discuss in groups...

What kinds of errors?
Missing tests

• Unit tests of all the new parts of the code

• Tests of typical use case

• Tests of corner cases or unusual situations

• Tests of invalid user input

• Regression tests where appropriate

• Integration tests with other parts of the code

• Validation code to check accuracy of calculations

https://github.com/GalSim-developers/GalSim/pull/791#discussion_r75939521

What kinds of errors?
API redesign

• Feels clunky in some typical uses.

• Seems prone to user error from misuse.

• Doesn't match corresponding API of other parts of the code.

• Won't be extensible enough given future development plans.

• Doesn't have the appropriate options for some use cases.

https://github.com/GalSim-developers/GalSim/pull/798#discussion_r81340409

What kinds of errors?
Failures of tests

• Sometimes errors are very system-specific.

• Travis should catch errors on one of several standard systems.

• Helpful for others on development team to try new code on their
own machines to get a variety of OS's, Python versions, gcc
versions, numpy versions, etc.

• Even if you don't have time to review the code, this is a useful
service to perform for the team.

https://github.com/GalSim-developers/GalSim/pull/880#issuecomment-292606221

What kinds of errors?
Style

• Make sure code is clear. Readability is paramount.

• Make sure classes, function names indicate what they do.

• Make sure variable names match style elsewhere in code.

• If style if very bad throughout, suggest using a linter.

• If some section is very hard to read because of style, suggest
specific changes.

https://github.com/GalSim-developers/GalSim/pull/819#discussion_r85220761

What kinds of errors?
Documentation

• Improve (or add) user documentation of new features.

• Add new features list to the CHANGELOG.

• Give overview of algorithm in in-line comments.

• Reference relevant papers where formulae or algorithms come from.

• If using Sphinx or similar, make sure new docs process correctly.

• Include new features in demos if appropriate.

https://github.com/GalSim-developers/GalSim/pull/847#discussion_r93474311

What kinds of errors?
Inefficient code

• Avoid gratuitously inefficient code, such as loops in Python that
are easy to convert to a list comprehension or calculations that
can be pulled out of a loop.

• But don't prematurely optimize. If it's not in a "tall pole" section
of the code, readability is more important than speed.

• Try to keep the inefficient algorithm in unit tests (since it might
be "true by inspection") to compare against a faster algorithm.

• Consider pulling repeated code out into a helper function.

https://github.com/GalSim-developers/GalSim/pull/814#discussion_r84419034

Who should do the review?

Who should do the review?
• Ideally at least two other developers on the same project.

• Anyone who already worked on portions of the code being changed.

• Encourage junior developers to participate as reviewers.

• Users of the code are excellent as reviewers of API design and
docs.

• Occasionally bring in outside expertise to review portions of the
code. (E.g. DESC architects)

How can you make your code easier to review?

Discuss in groups...

How can you make your code easier to review?
Keep it short.

• The PR should cover a single topic.

• Ideally, a reviewer should be able to fully understand the code
changes in a few hours at most.

• For large refactorings, perhaps break up into a few PRs covering
one set of related changes at a time.

• In some cases, trivial changes can be pushed directly to master
before the PR. E.g. splitting up the contents of a file into multiple
files or whitespace edits.

https://github.com/GalSim-developers/GalSim/pull/817

How can you make your code easier to review?
Summarize your changes

• Give the reviewers sufficient context about your code changes.

• List the major changes your PR includes

• Point out tricky corner cases that you considered.

• Discuss any algorithmic or API decisions that you struggled with.

• Make sure to reference any open issues that the PR resolves or
where design discussions have happened.

• Can write inline comments yourself before reviewers take a look.

https://github.com/GalSim-developers/GalSim/pull/911

How can you make your code easier to review?

Discuss work while developing

• Don't wait until code review to get feedback on design choices.

• Use the issue page to propose several possible API designs and
ask about potential downsides of each.

• Advertise validation results in issue page before code is ready for
review.

• Assign as code reviewers the people who participated in these
discussions.

https://github.com/GalSim-developers/GalSim/pull/703

Conclusions
• Developing in a team needs a different workflow than when

developing solo code.

• Code reviews save time in the long run and improve the quality of
code.

• Both reviewing and being reviewed will improve your skillz.

• For further reading and recommendations from CI group, see the
LSST DESC Coding Guidelines.

https://docs.google.com/document/d/1v54bVQI2NejK2UqACDnGXj1t6IGFgY3Uc1R7iV2uLpY/edit#heading=h.rhfrwt4is5b9

