
RAIL: a platform for photometric
redshift production and research
Overview and Tutorial

LINCC Tech Talk, Nov 13 2024
Tianqing Zhang on behalf of RAIL team

The goal of the tutorial

● Understand a basic background of photometric redshift, and its relation to
other topics in DESC

● Understand how RAIL is designed and its basic functionality
● Install RAIL or use RAIL in a pre-installed environment
● Get some photo-z results and make some plots!
● Basic understanding of the RAIL pipeline

Photometric redshift

For LSST, we determine most galaxies’ distance (redshift)
by photometric information – photometric redshift
(photo-z).

Photometric information: magnitude of a reference band,
and colors (difference in magnitude between two bands)

λobs = λrest (1+z)

Colors in visible/IR bands are sensitive to redshift
because the ~3600A Balmer break traverse through
400-1200 nm from z=0~2

Balmer
break

Credit: CANDLES, spectra of different objects

Redshift information from color

Photometric uncertainties

Photometric uncertainties blow up for dim objects
Quoting photo-z performance without stating what sample or limiting
magnitude you are using is not useful

The challenges in photo-z studies

There are dozens of photo-z methods, categorized by whether they are data-driven or
physics-driven (Salvato et al., Newman et al.). They are written in different languages,
expecting different format of input/output, different treatment of corner cases.

This makes it very challenging to

1. Compare multiple methods on the same dataset (bias, variance, outliers, speed)
2. Efficiently produce photo-z products
3. Save configuration of multiple runs
4. Ensure safeguards are implemented

RAIL is designed to solve these issues.

https://ui.adsabs.harvard.edu/abs/2019NatAs...3..212S/abstract
https://arxiv.org/pdf/2206.13633

TASK 0: A PHOTO-Z QUIZ

What are the normal input of a
photo-z algorithm?

A. Ellipticity of galaxy
B. Magnitudes of a galaxy
C. Photometric noise of a galaxy
D. Location of a galaxy

✅
✅

What is the most important
feature of a galaxy that makes
photo-z works?

A. The emission line
B. The bulge and disk

structure
C. The Balmer break
D. The star formation rate

✅

RAIL: Redshift Assessment Infrastructure Layers

8

RAIL is an open-source software library to provide a platform for photo-z production and
study. It is originated and currently based in DESC, but is also envisioned to serve the a
broader LSST community.

Developers of the RAIL package: DESC pipeline scientists, LINCC frameworks scientists
and engineers, DESC in-kind contributors, etc.

The basic building blocks in RAIL are stages; the
stages can be connected into pipelines.

The RAIL’s workflow is built upon ceci; the
photo-z PDF format uses qp, a generic library for
handling 1D PDFs. RAIL sub-packages are
streamlined by python-project-template

https://github.com/lincc-frameworks/python-project-template

The RAIL Team

Tianqing Zhang Qianjun Hang

Eric Charles Sam Schmidt
Alex Malz

John-Franklin
Crenshaw

Ziang Yan Jan Luca
van den Busch

Luca Tortorelli

Drew Oldag Olivia Lynn

And many others

TASK 1: Install RAIL / Use the NERSC environment

Installation how-to: https://rail-hub.readthedocs.io/en/latest/source/installation.html

Developer installation:
git clone https://github.com/LSSTDESC/rail.git

cd rail

conda env create -f environment.yml -n [env] # or mamba env create, which is much faster

conda activate [env]

pip install -e .

rail clone-source --package-file rail_packages.yml

rail install --package-file rail_packages.yml --from-source

https://rail-hub.readthedocs.io/en/latest/source/installation.html

RAIL stages: getting photo-z’s

1. Informer

2. Estimator

3. Classifier

4. Summarizer

Training/Preparing a
photo-z model

Spec-z X
photometry

Tree-Pz
informer

Tree
model

Tree-Pz
estimator

Tree model
Photometry

Tree photo-z
PDFs

photo-z PDFs Z-best
cutter Bin index

photo-z PDFs Hierarchical
inference n(z) samples

ExamplesFunctionalityName

Estimate photo-z

Assign tomographic
binning

Produce n(z)

Model

RAIL Stage

Data

Available photo-z methods

Template fitting

BPZ (Bayesian Photometric Redshift) paper rail_bpz

LePhare paper rail_lephare

Machine Learning

CMNN paper rail_cmnn: Color-Matched Nearest Neighbor

FlexZBoost paper rail_flexzboost: xgboost

GPz paper rail_gpz: sparse Gaussian process

TPz paper rail_tpz: Tree PZ

PZFlow rail_pzflow: normalizing flow

SciKit Learn methods: KNN, Neural Net, RF, etc

Hybrid
Delight paper rail_delight
DNF

Image-based ML
DeepDISC rail_deepdisc
Inception rail_inception

Summarizers
Naive Stacking: Stack p(z)
NZ_DIR direct calibration n(z)
SOM: somoclu, SOMpz
YetAnotherWizz
LogGP

https://ui.adsabs.harvard.edu/abs/2000ApJ...536..571B/abstract
https://github.com/LSSTDESC/rail_bpz
https://ui.adsabs.harvard.edu/abs/1999MNRAS.310..540A/abstract
https://github.com/LSSTDESC/rail_lephare
https://ui.adsabs.harvard.edu/abs/2018AJ....155....1G/abstract
https://github.com/LSSTDESC/rail_cmnn
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Converting-high-dimensional-regression-to-high-dimensional-conditional-density-estimation/10.1214/17-EJS1302.full
https://github.com/LSSTDESC/rail_flexzboost
https://academic.oup.com/mnras/article/462/1/726/2589544
https://github.com/LSSTDESC/rail_gpz
https://academic.oup.com/mnras/article/432/2/1483/1029454
https://github.com/LSSTDESC/rail_tpz
https://github.com/LSSTDESC/rail_pzflow
https://arxiv.org/abs/2101.03723
https://github.com/LSSTDESC/rail_delight
https://github.com/LSSTDESC/rail_deepdisc
http://github.com/LSSTDESC/rail_inception

RAIL Stages: creating mock data
1. Creator

2. Degrader

3. Evaluator

Create mock catalog

Degrade mock catalog
to observed catalog

Spec-z X
photo-z

PIT
evaluator PIT stats

flow
engine
creator

forward model e.g.
normalizing flow Photometry

True
Photometry

Photometric
error model

Observed
Photometry

Evaluate performance

Model

RAIL Stage

Data

Available engine and degraders

Engines

Pzflow engine
FSPS/DSPS

Noisifier

Photometric error model (add noise to photometry)

Line Confusion (change true redshift)

Reddening

Selector

Inverse redshift incompleteness

Spectroscopic selection (BOSS, DEEP2, VVDS, zCOSMOS)

Hybrid

Unrecognized blending degrader

RAIL Namespace stuff

● RAIL has a lots of sub-packages, for the flexibility of installation
● But all RAIL packages share the same name space

○ A namespace is a system that has a unique name for each and every object in Python
● RAIL namespace is organized in the following way:

○ Informer, estimator and summarizers -> rail.estimation.algo
○ Engine -> rail.creation.engine
○ Degraders -> rail.creation.noisifier/selector
○ Evaluators -> rail.evaluation.metrics
○ Pipeline -> rail.pipeline
○ Basic classes -> rail.core
○ Utility (Tools) -> rail.utils (rail.tools)

■ Util are methods, tools are classes

TASK 2: GET SOME PHOTO-Z

Go to RAIL_estimation_demo.ipynb

RAIL pipeline

You can put multiple RAIL stages together to form a pipeline, as long as they can
be represented by a Directed Acyclic Graph (meaning, no loop)

Photometry+
redshift

Photo-z algo
training Model 1

Photometry

Photo-z algo 1
estimation Algo 1 photo-z

Model

RAIL Stage

Data

RAIL pipeline

The pipeline can be made in python and saved as yaml files

We are building pre-made pipelines in rail_pipelines

Pipeline YAML files

Ceci config

RAIL config

To run a pipeline:
> ceci [ceci_config.yml]

The RAIL Tutorial

DESC Sprint week @ SLAC Fall 2024
TQ, Eric on behalf of the RAIL team

The goal of the tutorial

● Understand a basic background of photometric redshift, and its relation to
other topics in DESC

● Understand how RAIL is designed and its basic functionality
● Install RAIL or use RAIL in a pre-installed environment
● Get some photo-z results and make some plots!
● Basic understanding of the RAIL pipeline

Photometric redshift

For LSST, we determine most galaxies’ distance (redshift)
by photometric information – photometric redshift
(photo-z).

Photometric information: magnitude of a reference band,
and colors (difference in magnitude between two bands)

λobs = λrest (1+z)

Colors in visible/IR bands are sensitive to redshift
because the ~3600A Balmer break traverse through
400-1200 nm from z=0~2

Balmer
break

Credit: CANDLES, spectra of different objects

Redshift information from color

Photometric uncertainties

Photometric uncertainties blow up for dim objects

Quoting photo-z performance without stating what sample or limiting
magnitude you are using is not useful

 *Slide borrowed from Eric Charles

The challenges in photo-z studies

There are dozens of photo-z methods, categorized by whether they are data-driven or
physics-driven (Salvato et al., Newman et al.). They are written in different languages,
expecting different format of input/output, different treatment of corner cases.

This makes it very challenging to

1. Compare multiple methods on the same dataset (bias, variance, outliers, speed)
2. Efficiently produce photo-z products
3. Save configuration of multiple runs
4. Ensure safeguards are implemented

RAIL is designed to solve these issues.

https://ui.adsabs.harvard.edu/abs/2019NatAs...3..212S/abstract
https://arxiv.org/pdf/2206.13633

TASK 0: A PHOTO-Z QUIZ

What are the normal input of a
photo-z algorithm?

A. Ellipticity of galaxy
B. Magnitudes of a galaxy
C. Photometric noise of a galaxy
D. Location of a galaxy

✅
✅

What is the most important
feature of a galaxy that makes
photo-z works?

A. The emission line
B. The bulge and disk

structure
C. The Balmer break
D. The star formation rate

✅

RAIL: Redshift Assessment Infrastructure Layers

27

RAIL is an open-source software library to provide a platform for photo-z production and
study. It is originated and currently based in DESC, but is also envisioned to serve the a
broader LSST community.

Developers of the RAIL package: DESC pipeline scientists, LINCC frameworks scientists
and engineers, DESC in-kind contributors, etc.

The basic building blocks in RAIL are stages; the
stages can be connected into pipelines.

The RAIL’s workflow is built upon ceci; the
photo-z PDF format uses qp, a generic library for
handling 1D PDFs. RAIL sub-packages are
streamlined by python-project-template

https://github.com/lincc-frameworks/python-project-template

TASK 1: Install RAIL / Use the NERSC environment

Installation how-to: https://rail-hub.readthedocs.io/en/latest/source/installation.html

Developer installation:
git clone https://github.com/LSSTDESC/rail.git

cd rail

conda env create -f environment.yml -n [env] # or mamba env create, which is much faster

conda activate [env]

pip install -e .

rail clone-source --package-file rail_packages.yml

rail install --package-file rail_packages.yml --from-source

https://rail-hub.readthedocs.io/en/latest/source/installation.html

TASK 1: Install RAIL / Use the NERSC environment

Log in NERSC:

python /global/common/software/lsst/common/miniconda/start-kernel-cli.py
desc-python-bleed

Or initialize a RAIL notebook in desc-python-bleed

Pull the example from rail-hub:

git clone git@github.com:LSSTDESC/rail.git

mailto:git@github.com

RAIL stages: getting photo-z’s

1. Informer

2. Estimator

3. Classifier

4. Summarizer

Training/Preparing a
photo-z model

Spec-z X
photometry

Tree-Pz
informer

Tree
model

Tree-Pz
estimator

Tree model
Photometry

Tree photo-z
PDFs

photo-z PDFs Z-best
cutter Bin index

photo-z PDFs Hierarchical
inference n(z) samples

ExamplesFunctionalityName

Estimate photo-z

Assign tomographic
binning

Produce n(z)

Model

RAIL Stage

Data

Available photo-z methods

Template fitting

BPZ (Bayesian Photometric Redshift) paper rail_bpz

LePhare paper rail_lephare

Machine Learning

CMNN paper rail_cmnn: Color-Matched Nearest Neighbor

FlexZBoost paper rail_flexzboost: xgboost

GPz paper rail_gpz: sparse Gaussian process

TPz paper rail_tpz: Tree PZ

PZFlow rail_pzflow: normalizing flow

SciKit Learn methods: KNN, Neural Net, RF, etc

Hybrid
Delight paper rail_delight
DNF

Image-based ML
DeepDISC rail_deepdisc
Inception rail_inception

Summarizers
Naive Stacking: Stack p(z)
NZ_DIR direct calibration n(z)
SOM: somoclu, SOMpz
YetAnotherWizz
LogGP

https://ui.adsabs.harvard.edu/abs/2000ApJ...536..571B/abstract
https://github.com/LSSTDESC/rail_bpz
https://ui.adsabs.harvard.edu/abs/1999MNRAS.310..540A/abstract
https://github.com/LSSTDESC/rail_lephare
https://ui.adsabs.harvard.edu/abs/2018AJ....155....1G/abstract
https://github.com/LSSTDESC/rail_cmnn
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Converting-high-dimensional-regression-to-high-dimensional-conditional-density-estimation/10.1214/17-EJS1302.full
https://github.com/LSSTDESC/rail_flexzboost
https://academic.oup.com/mnras/article/462/1/726/2589544
https://github.com/LSSTDESC/rail_gpz
https://academic.oup.com/mnras/article/432/2/1483/1029454
https://github.com/LSSTDESC/rail_tpz
https://github.com/LSSTDESC/rail_pzflow
https://arxiv.org/abs/2101.03723
https://github.com/LSSTDESC/rail_delight
https://github.com/LSSTDESC/rail_deepdisc
http://github.com/LSSTDESC/rail_inception

RAIL Stages: creating mock data
1. Creator

2. Degrader

3. Evaluator

Create mock catalog

Degrade mock catalog
to observed catalog

Spec-z X
photo-z

PIT
evaluator PIT stats

flow
engine
creator

forward model e.g.
normalizing flow Photometry

True
Photometry

Photometric
error model

Observed
Photometry

Evaluate performance

Model

RAIL Stage

Data

Available engine and degraders

Engines

Pzflow engine
FSPS/DSPS

Noisifier

Photometric error model (add noise to photometry)

Line Confusion (change true redshift)

Reddening

Selector

Inverse redshift incompleteness

Spectroscopic selection (BOSS, DEEP2, VVDS, zCOSMOS)

Hybrid

Unrecognized blending degrader

RAIL Namespace stuff

● RAIL has a lots of sub-packages, for the flexibility of installation
● But all RAIL packages share the same name space

○ A namespace is a system that has a unique name for each and every object in Python
● RAIL namespace is organized in the following way:

○ Informer, estimator and summarizers -> rail.estimation.algo
○ Engine -> rail.creation.engine
○ Degraders -> rail.creation.degrader
○ Evaluators -> rail.evaluation.metrics
○ Pipeline -> rail.pipeline
○ Basic classes -> rail.core
○ Utility (Tools) -> rail.utils (rail.tools)

■ Util are methods, tools are classes

TASK 2: GET SOME PHOTO-Z

Go to RAIL_estimation_demo.ipynb

RAIL pipeline

You can put multiple RAIL stages together to form a pipeline, as long as they can
be represented by a Directed Acyclic Graph (meaning, no loop)

Photometry Photo-z algo
training Model 1

Photometry

Photo-z algo 1
estimation Algo 1 photo-z

Model

RAIL Stage

Data

RAIL pipeline

The pipeline can be made in python and saved as yaml files

We are building pre-made pipelines in rail_pipelines

Pipeline YAML files

Ceci config

RAIL config

To run a pipeline:
> ceci [ceci_config.yml]

