clevar.match_metrics.scaling.array_funcs module¶
@file clevar/match_metrics/scaling/array_funcs.py
Main scaling functions using arrays.
- clevar.match_metrics.scaling.array_funcs.plot(values1, values2, err1=None, err2=None, ax=None, plt_kwargs=None, err_kwargs=None, values_color=None, add_cb=True, cb_kwargs=None, **kwargs)[source]¶
Scatter plot with errorbars and color based on input
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
err1 (array, None) – Errors of component x and y.
err2 (array, None) – Errors of component x and y.
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
values_color (array, None) – Values for color (cmap scale).
add_cb (bool) – Plot colorbar when values_color is not None.
cb_kwargs (dict, None) – Colorbar arguments
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
fit_err2 (array, None) – Error of component 2 (set to err2 if not provided).
fit_log (bool) – Bin and fit in log values (default=False).
fit_statistics (str) –
Statistics to be used in fit (default=mean). Options are:
individual : Use each point
mode : Use mode of component 2 distribution in each comp 1 bin, requires bins2.
mean : Use mean of component 2 distribution in each comp 1 bin, requires bins2.
fit_bins1 (array, None) – Bins for component 1 (default=10).
fit_bins2 (array, None) – Bins for component 2 (default=30).
fit_legend_kwargs (dict, None) – Additional arguments for plt.legend.
fit_bindata_kwargs (dict, None) – Additional arguments for pylab.errorbar.
fit_plt_kwargs (dict, None) – Additional arguments for plot of fit pylab.scatter.
fit_label_components (tuple (of strings)) – Names of fitted components in fit line label, default=(‘x’, ‘y’).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting, with values:
x: x values in fit (log of values if log=True).
y: y values in fit (log of values if log=True).
y_err: errorbar on y values (error_log if log=True).
fit (optional): fitting output dictionary, with values:
pars: fitted parameter.
cov: covariance of fitted parameters.
func: fitting function with fitted parameter.
func_plus: fitting function with fitted parameter plus 1x scatter.
func_minus: fitting function with fitted parameter minus 1x scatter.
func_scat: scatter of fited function.
func_dist: P(y|x) - Probability of having y given a value for x, assumes normal distribution and uses scatter of the fitted function.
func_scat_interp: interpolated scatter from data.
func_dist_interp: P(y|x) using interpolated scatter.
plots (optional): additional plots:
fit: fitted data
errorbar: binned data
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_density(values1, values2, bins1=30, bins2=30, ax_rotation=0, rotation_resolution=30, xscale='linear', yscale='linear', err1=None, err2=None, ax=None, plt_kwargs=None, add_cb=True, cb_kwargs=None, err_kwargs=None, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
bins1 (array, None) – Bins for component x and y (for density colors).
bins2 (array, None) – Bins for component x and y (for density colors).
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2)
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
err1 (array, None) – Errors of component x and y.
err2 (array, None) – Errors of component x and y.
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.array_funcs.plot for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.array_funcs.plot for more info).
fit (optional): fitting output dictionary (see scaling.array_funcs.plot for more info).
plots (optional): fit and binning plots (see scaling.array_funcs.plot for more info).
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_density_dist(values1, values2, bins1=30, bins2=30, ax_rotation=0, rotation_resolution=30, xscale='linear', yscale='linear', err1=None, err2=None, plt_kwargs=None, add_cb=True, cb_kwargs=None, err_kwargs=None, fig_kwargs=None, fig_pos=(0.1, 0.1, 0.95, 0.95), fig_frac=(0.8, 0.01, 0.02), vline_kwargs=None, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with distribution panels.
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
bins1 (array, None) – Bins for component x and y (for density colors).
bins2 (array, None) – Bins for component x and y (for density colors).
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2) on main plot.
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
err1 (array, None) – Errors of component x and y.
err2 (array, None) – Errors of component x and y.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
fig_kwargs (dict, None) – Additional arguments for plt.subplots
fig_pos (tuple) – List with edges for the figure. Must be in format (left, bottom, right, top)
fig_frac (tuple) – Sizes of each panel in the figure. Must be in the format (main_panel, gap, colorbar) and have values: [0, 1]. Colorbar is only used with add_cb key.
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.array_funcs.plot for more info).
vline_kwargs (dict, None) – Arguments for vlines marking bins in main plot, used in plt.axvline.
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: dictionary with each ax of the plot.
binned_data (optional): input data for fitting (see scaling.array_funcs.plot for more info).
fit (optional): fitting output dictionary (see scaling.array_funcs.plot for more info).
plots (optional): fit and binning plots (see scaling.array_funcs.plot for more info).
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_density_metrics(values1, values2, bins1=30, bins2=30, ax_rotation=0, rotation_resolution=30, xscale='linear', yscale='linear', err1=None, err2=None, metrics_mode='simple', metrics=['std'], plt_kwargs=None, add_cb=True, cb_kwargs=None, err_kwargs=None, metrics_kwargs=None, fig_kwargs=None, fig_pos=(0.1, 0.1, 0.95, 0.95), fig_frac=(0.8, 0.01, 0.02), **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with scatter and bias panels
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
bins1 (array, None) – Bins for component x and y.
bins2 (array, None) – Bins for component x and y.
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2) on main plot.
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
err1 (array, None) – Errors of component x and y.
err2 (array, None) – Errors of component x and y.
metrics_mode (str) –
Mode to run metrics. Options are:
simple : metrics for values2.
log : metrics for log10(values2).
diff : metrics for values2-values1.
diff_log : metrics for log10(values2)-log10(values1).
diff_z : metrics for (values2-values1)/(1+values1).
metrics (list) –
List of mettrics to be plotted. Possibilities are:
’mean’ : compute the mean of values for points within each bin.
’std’ : compute the standard deviation within each bin.
’median’ : compute the median of values for points within each bin.
’count’ : compute the count of points within each bin.
’sum’ : compute the sum of values for points within each bin.
’min’ : compute the minimum of values for points within each bin.
’max’ : compute the maximum of values for point within each bin.
’p_#’ : compute half the width where a percentile of data is found. Number must be between 0-100 (ex: ‘p_68’, ‘p_95’, ‘p_99’).
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
fig_kwargs (dict, None) – Additional arguments for plt.subplots
fig_pos (tuple) – List with edges for the figure. Must be in format (left, bottom, right, top)
fig_frac (tuple) – Sizes of each panel in the figure. Must be in the format (main_panel, gap, colorbar) and have values: [0, 1]. Colorbar is only used with add_cb key.
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.array_funcs.plot for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: dictionary with each ax of the plot.
metrics: dictionary with the plots for each metric.
binned_data (optional): input data for fitting (see scaling.array_funcs.plot for more info).
fit (optional): fitting output dictionary (see scaling.array_funcs.plot for more info).
plots (optional): fit and binning plots (see scaling.array_funcs.plot for more info).
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_density_panel(values1, values2, values_panel, bins_panel, bins1=30, bins2=30, ax_rotation=0, rotation_resolution=30, xscale='linear', yscale='linear', err1=None, err2=None, plt_kwargs=None, add_cb=True, cb_kwargs=None, err_kwargs=None, panel_kwargs_list=None, panel_kwargs_errlist=None, fig_kwargs=None, add_label=True, label_format=<function <lambda>>, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with panels
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
values_panel (array) – Values to bin data in panels
bins_panel (array, int) – Bins defining panels
bins1 (array, None) – Bins for component x and y (for density colors).
bins2 (array, None) – Bins for component x and y (for density colors).
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2)
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
err1 (array, None) – Errors of component x and y.
err2 (array, None) – Errors of component x and y.
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
panel_kwargs_list (list, None) – List of additional arguments for plotting each panel (using pylab.plot). Must have same size as len(bins2)-1
panel_kwargs_errlist (list, None) – List of additional arguments for plotting each panel (using pylab.errorbar). Must have same size as len(bins2)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
add_label (bool) – Add bin label to panel
label_format (function) – Function to format the values of the bins
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.array_funcs.plot for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.array_funcs.plot for more info).
fit (optional): fitting output dictionary (see scaling.array_funcs.plot for more info).
plots (optional): fit and binning plots (see scaling.array_funcs.plot for more info).
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_dist(values1, values2, bins1_dist, bins2, values_aux=None, bins_aux=5, log_vals=False, log_aux=False, transpose=False, shape='steps', plt_kwargs=None, line_kwargs_list=None, fig_kwargs=None, legend_kwargs=None, panel_label_prefix='', add_panel_label=True, panel_label_format=<function <lambda>>, add_line_label=True, line_label_format=<function <lambda>>)[source]¶
Plot distribution of a parameter, binned by other component in panels, and an optional secondary component in lines.
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
bins1_dist (array, int) – Bins for distribution of component 1.
bins2 (array, int) – Bins for component 2 (for panels/lines).
values_aux (array) – Auxiliary component (to bin data in lines/panels).
bins_aux (array, int) – Bins for component aux (for lines/panels).
log_vals (bool) – Log scale for values (and int bins)
log_aux (bool) – Log scale for aux values (and int bins)
transpose (bool) – Invert lines and panels
shape (str) – Shape of the lines. Can be steps or line.
plt_kwargs (dict, None) – Additional arguments for pylab.plot
line_kwargs_list (list, None) – List of additional arguments for plotting each line (using pylab.plot). Must have same size as len(bins_aux)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
legend_kwargs (dict, None) – Additional arguments for plt.legend
add_panel_label (bool) – Add bin label to panel
panel_label_format (function) – Function to format the values of the bins
panel_label_prefix (str) – Prefix to add to panel label
add_line_label (bool) – Add bin label to line
line_label_format (function) – Function to format the values of the bins
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_metrics(values1, values2, bins1=30, bins2=30, mode='simple', metrics=['mean', 'std'], metrics_kwargs=None, fig_kwargs=None, legend_kwargs=None)[source]¶
Plot metrics of 1 component.
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
bins1 (array, None) – Bins for component x and y.
bins2 (array, None) – Bins for component x and y.
mode (str) –
Mode to run metrics. Options are:
simple : metrics for values2.
log : metrics for log10(values2).
diff : metrics for values2-values1.
diff_log : metrics for log10(values2)-log10(values1).
diff_z : metrics for (values2-values1)/(1+values1).
metrics (list) –
List of mettrics to be plotted. Possibilities are:
’mean’ : compute the mean of values for points within each bin.
’std’ : compute the standard deviation within each bin.
’median’ : compute the median of values for points within each bin.
’count’ : compute the count of points within each bin.
’sum’ : compute the sum of values for points within each bin.
’min’ : compute the minimum of values for points within each bin.
’max’ : compute the maximum of values for point within each bin.
’p_#’ : compute half the width where a percentile of data is found. Number must be between 0-100 (ex: ‘p_68’, ‘p_95’, ‘p_99’).
If ‘.fill’ is added to each metric, it will produce a filled region between (-metric, metric).
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
fig_kwargs (dict, None) – Additional arguments for plt.subplots
legend_kwargs (dict, None) – Additional arguments for plt.legend
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.array_funcs.plot_panel(values1, values2, values_panel, bins_panel, err1=None, err2=None, values_color=None, plt_kwargs=None, err_kwargs=None, add_cb=True, cb_kwargs=None, panel_kwargs_list=None, panel_kwargs_errlist=None, fig_kwargs=None, add_label=True, label_format=<function <lambda>>, **kwargs)[source]¶
Scatter plot with errorbars and color based on input with panels
- Parameters
values1 (array) – Components x and y for plot.
values2 (array) – Components x and y for plot.
values_color (array, None) – Values for color (cmap scale)
values_panel (array) – Values to bin data in panels
bins_panel (array, int) – Bins defining panels
err1 (array, None) – Errors of component x and y.
err2 (array, None) – Errors of component x and y.
values_color – Values for color (cmap scale).
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
add_cb (bool) – Plot colorbar when values_color is not None.
cb_kwargs (dict, None) – Colorbar arguments
panel_kwargs_list (list, None) – List of additional arguments for plotting each panel (using pylab.plot). Must have same size as len(bins2)-1
panel_kwargs_errlist (list, None) – List of additional arguments for plotting each panel (using pylab.errorbar). Must have same size as len(bins2)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
add_label (bool) – Add bin label to panel
label_format (function) – Function to format the values of the bins
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.array_funcs.plot for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.array_funcs.plot for more info).
fit (optional): fitting output dictionary (see scaling.array_funcs.plot for more info).
plots (optional): fit and binning plots (see scaling.array_funcs.plot for more info).
- Return type
dict