Matching catalogs based on proximity (detailed)

Here we show the specific steps of matching two catalogs based on proximity

Table of Contents

  • 1  ClCatalogs

  • 2  Matching

    • 2.1  Prepare the catalogs

    • 2.2  Multiple matching

    • 2.3  Unique matching

    • 2.4  Cross matching

  • 3  Save and Load

  • 4  Getting Matched Pairs

  • 5  Outputing matched catalogs

    • 5.1  Outputing matching information to original catalogs

%load_ext autoreload
%autoreload 2

ClCatalogs

Given some input data

import numpy as np
from astropy.table import Table
input1 = Table({
    'ID': [f'CL{i}' for i in range(5)],
    'RA': [0.0, 0.0001, 0.00011, 25, 20],
    'DEC': [0.0, 0.0, 0.0, 0.0, 0.0],
    'Z': [0.2, 0.3, 0.25, 0.4, 0.35],
    'MASS': [10**13.5, 10**13.4, 10**13.3, 10**13.8, 10**14],
    'RADIUS_ARCMIN': [1.0, 1.0, 1.0, 1.0, 1.0],
})
input2 = Table({
    'ID': ['CL0', 'CL1', 'CL2', 'CL3'],
    'RA': [0.0, 0.0001, 0.00011, 25],
    'DEC': [0.0, 0, 0, 0],
    'Z': [0.3, 0.2, 0.25, 0.4],
    'MASS': [10**13.3, 10**13.4, 10**13.5, 10**13.8],
    'RADIUS_ARCMIN': [1.0, 1.0, 1.0, 1.0],
})
display(input1)
display(input2)
Table length=5
IDRADECZMASSRADIUS_ARCMIN
str3float64float64float64float64float64
CL00.00.00.231622776601683.7931.0
CL10.00010.00.325118864315095.821.0
CL20.000110.00.2519952623149688.831.0
CL325.00.00.463095734448019.431.0
CL420.00.00.35100000000000000.01.0
Table length=4
IDRADECZMASSRADIUS_ARCMIN
str3float64float64float64float64float64
CL00.00.00.319952623149688.831.0
CL10.00010.00.225118864315095.821.0
CL20.000110.00.2531622776601683.7931.0
CL325.00.00.463095734448019.431.0

Create two ClCatalog objects, they have the same properties of astropy tables with additional functionality. For the proximity matching, the main columns to be included are: - id - if not included, one will be assigned -ra(in degrees) - necessary -dec(in degrees) - necessary -z- necessary if used as matching criteria or for angular to physical convertion -mass(or mass proxy) - necessary if used as preference criteria for unique matches -radius- necessary if used as a criteria of matching (also requiresradius_unit` to be passed)

from clevar.catalog import ClCatalog
c1 = ClCatalog('Cat1', id=input1['ID'], ra=input1['RA'], dec=input1['DEC'], z=input1['Z'], mass=input1['MASS'])
c2 = ClCatalog('Cat2', id=input2['ID'], ra=input2['RA'], dec=input2['DEC'], z=input2['Z'], mass=input2['MASS'])
# Format for nice display
for c in ('ra', 'dec', 'z'):
    c1[c].info.format = '.2f'
    c2[c].info.format = '.2f'
for c in ('mass',):
    c1[c].info.format = '.2e'
    c2[c].info.format = '.2e'
display(c1)
display(c2)
Cat1
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=5
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_other
str3float64float64float64float64objectobjectobjectobject
CL00.000.000.203.16e+13NoneNone[][]
CL10.000.000.302.51e+13NoneNone[][]
CL20.000.000.252.00e+13NoneNone[][]
CL325.000.000.406.31e+13NoneNone[][]
CL420.000.000.351.00e+14NoneNone[][]
Cat2
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=4
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_other
str3float64float64float64float64objectobjectobjectobject
CL00.000.000.302.00e+13NoneNone[][]
CL10.000.000.202.51e+13NoneNone[][]
CL20.000.000.253.16e+13NoneNone[][]
CL325.000.000.406.31e+13NoneNone[][]

The ClCatalog object can also be read directly from a file, for details, see catalogs.ipynb.

Matching

Import the ProximityMatch and create a object for matching

from clevar.match import ProximityMatch
mt = ProximityMatch()

Prepare the catalogs

The first step is to prepare each catalog with the matching configuration:

  • delta_z: Defines redshift window for matching. The possible values are:

    • 'cat': uses redshift properties of the catalog

    • 'spline.filename': interpolates data in 'filename' assuming (z, zmin, zmax) format

    • float: uses delta_z*(1+z)

    • None: does not use z

  • match_radius: Radius of the catalog to be used in the matching. If 'cat' uses the radius in the catalog, else must be in format 'value unit'. (ex: '1 arcsec', '1 Mpc')

In this case, because one of the configuraion radius has physical units, we also need a cosmology (cosmo) object to convert it to angular size (this is done internally).

from clevar.cosmology import AstroPyCosmology
mt_config1 = {'delta_z':.2,
            'match_radius': '1 mpc',
            'cosmo':AstroPyCosmology()}
mt_config2 = {'delta_z':.2,
            'match_radius': '1 arcsec'}
mt.prep_cat_for_match(c1, **mt_config1)
mt.prep_cat_for_match(c2, **mt_config2)
## Prep mt_cols
* zmin|zmax from config value
* ang radius from set scale
## Prep mt_cols
* zmin|zmax from config value
* ang radius from set scale

This will add values to the mt_input attribute of the catalogs:

display(c1.mt_input)
display(c2.mt_input)
ClData length=5
zminzmaxang
float64float64float64
-0.040.440.08418388522320427
0.040.560.062361611333396835
0.000.500.0710414327593546
0.120.680.05169945411341919
0.080.620.05623291641697765
ClData length=4
zminzmaxang
float64float64float64
0.040.560.0002777777777777778
-0.040.440.0002777777777777778
0.000.500.0002777777777777778
0.120.680.0002777777777777778

Multiple matching

The next step is to match the catalogs and store all candidates that pass the matching criteria. You can also pass the argument: - radius_selection: Given a pair of clusters, which radius will be used for the matching.

%%time
mt.multiple(c1, c2)
mt.multiple(c2, c1)
Finding candidates (Cat1)
* 4/5 objects matched.
Finding candidates (Cat2)
* 4/4 objects matched.
CPU times: user 28.5 ms, sys: 539 µs, total: 29.1 ms
Wall time: 28.4 ms

This will fill the mt_multi_self and mt_multi_other columns:

display(c1)
display(c2)
Cat1
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=5
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_otherzminzmaxang
str3float64float64float64float64objectobjectobjectobjectfloat64float64float64
CL00.000.000.203.16e+13NoneNone['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']-0.040.440.08418388522320427
CL10.000.000.302.51e+13NoneNone['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.040.560.062361611333396835
CL20.000.000.252.00e+13NoneNone['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.000.500.0710414327593546
CL325.000.000.406.31e+13NoneNone['CL3']['CL3']0.120.680.05169945411341919
CL420.000.000.351.00e+14NoneNone[][]0.080.620.05623291641697765
Cat2
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=4
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_otherzminzmaxang
str3float64float64float64float64objectobjectobjectobjectfloat64float64float64
CL00.000.000.302.00e+13NoneNone['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.040.560.0002777777777777778
CL10.000.000.202.51e+13NoneNone['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']-0.040.440.0002777777777777778
CL20.000.000.253.16e+13NoneNone['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.000.500.0002777777777777778
CL325.000.000.406.31e+13NoneNone['CL3']['CL3']0.120.680.0002777777777777778

Unique matching

Once all candidates are stored in each catalog, we can find the best candidates. You can also pass the argument: - preference: In cases where there are multiple matched, how the best candidate will be chosen.

%%time
mt.unique(c1, c2, preference='angular_proximity')
mt.unique(c2, c1, preference='angular_proximity')
Unique Matches (Cat1)
* 4/5 objects matched.
Unique Matches (Cat2)
* 4/4 objects matched.
CPU times: user 57.6 ms, sys: 5.88 ms, total: 63.5 ms
Wall time: 62 ms

This will fill the mt_self and mt_other columns:

display(c1)
display(c2)
Cat1
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=5
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_otherzminzmaxang
str3float64float64float64float64objectobjectobjectobjectfloat64float64float64
CL00.000.000.203.16e+13CL0CL0['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']-0.040.440.08418388522320427
CL10.000.000.302.51e+13CL1CL1['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.040.560.062361611333396835
CL20.000.000.252.00e+13CL2CL2['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.000.500.0710414327593546
CL325.000.000.406.31e+13CL3CL3['CL3']['CL3']0.120.680.05169945411341919
CL420.000.000.351.00e+14NoneNone[][]0.080.620.05623291641697765
Cat2
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=4
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_otherzminzmaxang
str3float64float64float64float64objectobjectobjectobjectfloat64float64float64
CL00.000.000.302.00e+13CL0CL0['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.040.560.0002777777777777778
CL10.000.000.202.51e+13CL1CL1['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']-0.040.440.0002777777777777778
CL20.000.000.253.16e+13CL2CL2['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']0.000.500.0002777777777777778
CL325.000.000.406.31e+13CL3CL3['CL3']['CL3']0.120.680.0002777777777777778

Cross matching

If you want to make sure the same pair was found in both directions:

c1.cross_match()
c2.cross_match()

This will fill the mt_cross column:

display(c1)
display(c2)
Cat1
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=5
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_othermt_crosszminzmaxang
str3float64float64float64float64objectobjectobjectobjectobjectfloat64float64float64
CL00.000.000.203.16e+13CL0CL0['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL0-0.040.440.08418388522320427
CL10.000.000.302.51e+13CL1CL1['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL10.040.560.062361611333396835
CL20.000.000.252.00e+13CL2CL2['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL20.000.500.0710414327593546
CL325.000.000.406.31e+13CL3CL3['CL3']['CL3']CL30.120.680.05169945411341919
CL420.000.000.351.00e+14NoneNone[][]None0.080.620.05623291641697765
Cat2
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=4
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_othermt_crosszminzmaxang
str3float64float64float64float64objectobjectobjectobjectobjectfloat64float64float64
CL00.000.000.302.00e+13CL0CL0['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL00.040.560.0002777777777777778
CL10.000.000.202.51e+13CL1CL1['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL1-0.040.440.0002777777777777778
CL20.000.000.253.16e+13CL2CL2['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL20.000.500.0002777777777777778
CL325.000.000.406.31e+13CL3CL3['CL3']['CL3']CL30.120.680.0002777777777777778

Save and Load

The results of the matching can easily be saved and load using ClEvaR tools:

mt.save_matches(c1, c2, out_dir='temp', overwrite=True)
mt.load_matches(c1, c2, out_dir='temp')
display(c1)
display(c2)
Cat1
<< ClEvar used in matching: 0.13.2 >>
 * Total objects:    5
 * multiple (self):  4
 * multiple (other): 4
 * unique (self):    4
 * unique (other):   4
 * cross:            4

Cat2
<< ClEvar used in matching: 0.13.2 >>
 * Total objects:    4
 * multiple (self):  4
 * multiple (other): 4
 * unique (self):    4
 * unique (other):   4
 * cross:            4
Cat1
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=5
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_othermt_crosszminzmaxang
str3float64float64float64float64objectobjectobjectobjectobjectfloat64float64float64
CL00.000.000.203.16e+13CL0CL0['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL0-0.040.440.08418388522320427
CL10.000.000.302.51e+13CL1CL1['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL10.040.560.062361611333396835
CL20.000.000.252.00e+13CL2CL2['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL20.000.500.0710414327593546
CL325.000.000.406.31e+13CL3CL3['CL3']['CL3']CL30.120.680.05169945411341919
CL420.000.000.351.00e+14NoneNone[][]None0.080.620.05623291641697765
Cat2
tags: id(id), ra(ra), dec(dec), z(z), mass(mass)
Radius unit: None
ClData length=4
mt_input
idradeczmassmt_selfmt_othermt_multi_selfmt_multi_othermt_crosszminzmaxang
str3float64float64float64float64objectobjectobjectobjectobjectfloat64float64float64
CL00.000.000.302.00e+13CL0CL0['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL00.040.560.0002777777777777778
CL10.000.000.202.51e+13CL1CL1['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL1-0.040.440.0002777777777777778
CL20.000.000.253.16e+13CL2CL2['CL2', 'CL1', 'CL0']['CL2', 'CL1', 'CL0']CL20.000.500.0002777777777777778
CL325.000.000.406.31e+13CL3CL3['CL3']['CL3']CL30.120.680.0002777777777777778

Getting Matched Pairs

There is functionality inbuilt in clevar to plot some results of the matching, such as: - Recovery rates - Distances (anguar and redshift) of cluster centers - Scaling relations (mass, redshift, …) for those cases, check the match_metrics.ipynb and match_metrics_advanced.ipynb notebooks.

If those do not provide your needs, you can get directly the matched pairs of clusters:

from clevar.match import get_matched_pairs
mt1, mt2 = get_matched_pairs(c1, c2, 'cross')

These will be catalogs with the corresponding matched pairs:

import pylab as plt
plt.scatter(mt1['mass'], mt2['mass'])
<matplotlib.collections.PathCollection at 0x7fafbd269700>
../_images/proximity_matching_detailed_32_1.png

Outputing matched catalogs

To save the current catalogs, you can use the write inbuilt function:

c1.write('c1_temp.fits', overwrite=True)

This will allow you to save the catalog with its current labels and matching information.

Outputing matching information to original catalogs

Assuming your input data came from initial files, clevar also provides functions create output files that combine all the information on them with the matching results.

To add the matching information to an input catalog, use:

from clevar.match import output_catalog_with_matching
output_catalog_with_matching('input_catalog.fits', 'output_catalog.fits', c1)
  • note: input_catalog.fits must have the same number of rows that c1.

To create a matched catalog containig all columns of both input catalogs, use:

from clevar.match import output_matched_catalog
output_matched_catalog('input_catalog1.fits', 'input_catalog2.fits',
    'output_catalog.fits', c1, c2, matching_type='cross')

where matching_type must be cross, cat1 or cat2.

  • note: input_catalog1.fits must have the same number of rows that c1 (and the same for c2).