clevar.match_metrics.scaling.funcs module¶
@file clevar/match_metrics/scaling/funcs.py
Main scaling functions for mass and redshift plots, wrapper of catalog_funcs functions
- clevar.match_metrics.scaling.funcs.mass(cat1, cat2, matching_type, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on input
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
log_mass (bool) – Log scale for mass
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
xlabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
add_fit_err (bool) – Use mass errors of catalog 2 in fit (default=True).
fit_log (bool) – Bin and fit in log values (default=True).
fit_statistics (str) –
Statistics to be used in fit (default=mean). Options are:
individual - Use each point.
mode - Use mode of catalog 2 mass distribution in each catalog 1 mass bin, requires fit_bins2.
mean - Use mean of catalog 2 mass distribution in each catalog 1 mass bin, requires fit_bins2.
fit_bins1 (array, None) – Bins for mass of catalog 1 (default=10).
fit_bins2 (array, None) – Bins for mass of catalog 2 (default=30).
fit_legend_kwargs (dict, None) – Additional arguments for plt.legend.
fit_bindata_kwargs (dict, None) – Additional arguments for pylab.errorbar.
fit_plt_kwargs (dict, None) – Additional arguments for plot of fit pylab.scatter.
fit_label_components (tuple (of strings)) – Names of fitted components in fit line label, default=(xlabel, ylabel).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
binned_data (optional): input data for fitting, with values:
x: x values in fit (log of values if log=True).
y: y values in fit (log of values if log=True).
y_err: errorbar on y values (error_log if log=True).
fit (optional): fitting output dictionary, with values:
pars: fitted parameter.
cov: covariance of fitted parameters.
func: fitting function with fitted parameter.
func_plus: fitting function with fitted parameter plus 1x scatter.
func_minus: fitting function with fitted parameter minus 1x scatter.
func_scat: scatter of fited function.
func_dist: P(y|x) - Probability of having y given a value for x, assumes normal distribution and uses scatter of the fitted function.
func_scat_interp: interpolated scatter from data.
func_dist_interp: P(y|x) using interpolated scatter.
plots (optional): additional plots:
fit: fitted data
errorbar: binned data
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_density(cat1, cat2, matching_type, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
log_mass (bool) – Log scale for mass
bins1 (array, None) – Bins for mass of catalogs 1 and 2 (for density colors).
bins2 (array, None) – Bins for mass of catalogs 1 and 2 (for density colors).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2)
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
xlabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.mass for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.mass for more info).
fit (optional): fitting output dictionary (see scaling.mass for more info).
plots (optional): fit and binning plots (see scaling.mass for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_density_dist(cat1, cat2, matching_type, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with scatter and bias panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
col (str) – Name of column to be plotted
bins1 (array, None) – Bins for mass of catalogs 1 and 2 (for density colors).
bins2 (array, None) – Bins for mass of catalogs 1 and 2 (for density colors).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
log_mass (bool) – Log scale for mass
fig_kwargs (dict, None) – Additional arguments for plt.subplots
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2) on main plot.
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
fig_pos (tuple) – List with edges for the figure. Must be in format (left, bottom, right, top)
fig_frac (tuple) – Sizes of each panel in the figure. Must be in the format (main_panel, gap, colorbar) and have values: [0, 1]. Colorbar is only used with add_cb key.
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.mass for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: dictionary with each ax of the plot.
binned_data (optional): input data for fitting (see scaling.mass for more info).
fit (optional): fitting output dictionary (see scaling.mass for more info).
plots (optional): fit and binning plots (see scaling.mass for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_density_metrics(cat1, cat2, matching_type, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with scatter and bias panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
log_mass (bool) – Log scale for mass
bins1 (array, None) – Bins for mass of catalogs 1 and 2.
bins2 (array, None) – Bins for mass of catalogs 1 and 2.
metrics_mode (str) –
Mode to run metrics (default=`log`). Options are:
simple : metrics for values2.
log : metrics for log10(values2).
diff : metrics for values2-values1.
diff_log : metrics for log10(values2)-log10(values1).
diff_z : metrics for (values2-values1)/(1+values1).
metrics (list) –
List of mettrics to be plotted (default=[std]). Possibilities are:
mean : compute the mean of values for points within each bin.
std : compute the standard deviation within each bin.
median : compute the median of values for points within each bin.
count : compute the count of points within each bin.
sum : compute the sum of values for points within each bin.
min : compute the minimum of values for points within each bin.
max : compute the maximum of values for point within each bin.
p_# : compute half the width where a percentile of data is found. Number must be between 0-100 (ex: p_68, p_95, p_99).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
fig_kwargs (dict, None) – Additional arguments for plt.subplots
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2) on main plot.
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
fig_pos (tuple) – List with edges for the figure. Must be in format (left, bottom, right, top)
fig_frac (tuple) – Sizes of each panel in the figure. Must be in the format (main_panel, gap, colorbar) and have values: [0, 1]. Colorbar is only used with add_cb key.
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.mass for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: dictionary with each ax of the plot.
metrics: dictionary with the plots for each metric.
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_density_zpanel(cat1, cat2, matching_type, redshift_bins=5, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
redshift_bins (int, array, int) – Redshift bins to make panels
log_mass (bool) – Log scale for mass
panel_cat1 (bool) – Used catalog 1 for col_panel. If false uses catalog 2
bins1 (array, None) – Bins for mass of catalogs 1 and 2 (for density colors).
bins2 (array, None) – Bins for mass of catalogs 1 and 2 (for density colors).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2)
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
panel_kwargs_list (list, None) – List of additional arguments for plotting each panel (using pylab.plot). Must have same size as len(bins2)-1
panel_kwargs_errlist (list, None) – List of additional arguments for plotting each panel (using pylab.errorbar). Must have same size as len(bins2)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
add_label (bool) – Add bin label to panel
label_format (function) – Function to format the values of the bins
label_fmt (str) – Format the values of binedges (ex: ‘.2f’)
xlabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.mass for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.mass for more info).
fit (optional): fitting output dictionary (see scaling.mass for more info).
plots (optional): fit and binning plots (see scaling.mass for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_dist(cat1, cat2, matching_type, mass_bins_dist=30, mass_bins=5, redshift_bins=5, log_mass=True, transpose=False, **kwargs)[source]¶
Plot distribution of a cat1 mass, binned by the cat2 mass (in panels), with option for cat2 redshift bins (in lines).
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
mass_bins_dist (array, int) – Bins for distribution of the cat1 mass
mass_bins (array, int) – Bins for cat2 mass
redshift_bins (array, int) – Bins for cat2 redshift
log_mass (bool) – Log scale for mass
transpose (bool) – Invert lines and panels
fig_kwargs (dict, None) – Additional arguments for plt.subplots
shape (str) – Shape of the lines. Can be steps or line.
plt_kwargs (dict, None) – Additional arguments for pylab.plot
line_kwargs_list (list, None) – List of additional arguments for plotting each line (using pylab.plot). Must have same size as len(bins_aux)-1
legend_kwargs (dict, None) – Additional arguments for plt.legend
add_panel_label (bool) – Add bin label to panel
panel_label_format (function) – Function to format the values of the bins
add_line_label (bool) – Add bin label to line
line_label_format (function) – Function to format the values of the bins
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_dist_self(cat, mass_bins_dist=30, mass_bins=5, redshift_bins=5, log_mass=True, transpose=False, mask=None, **kwargs)[source]¶
Plot distribution of a cat mass, binned by mass (in panels), with option for redshift bins (in lines). Is is useful to compare with mass_dist results.
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
cat (clevar.ClCatalog) – Input Catalog
mass_bins_dist (array, int) – Bins for distribution of mass
mass_bins (array, int) – Bins for mass panels
redshift_bins (array, int) – Bins for redshift
log_mass (bool) – Log scale for mass
transpose (bool) – Invert lines and panels
fig_kwargs (dict, None) – Additional arguments for plt.subplots
shape (str) – Shape of the lines. Can be steps or line.
plt_kwargs (dict, None) – Additional arguments for pylab.plot
line_kwargs_list (list, None) – List of additional arguments for plotting each line (using pylab.plot). Must have same size as len(bins_aux)-1
legend_kwargs (dict, None) – Additional arguments for plt.legend
add_panel_label (bool) – Add bin label to panel
panel_label_format (function) – Function to format the values of the bins
add_line_label (bool) – Add bin label to line
line_label_format (function) – Function to format the values of the bins
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_metrics(cat1, cat2, matching_type, log_mass=True, **kwargs)[source]¶
Plot metrics.
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
log_mass (bool) – Log scale for mass
bins1 (array, None) – Bins for mass of catalogs 1 and 2.
bins2 (array, None) – Bins for mass of catalogs 1 and 2.
metrics_mode (str) –
Mode to run metrics (default=`log`). Options are:
simple : metrics for values2.
log : metrics for log10(values2).
diff : metrics for values2-values1.
diff_log : metrics for log10(values2)-log10(values1).
diff_z : metrics for (values2-values1)/(1+values1).
metrics (list) –
List of mettrics to be plotted (default=[std]). Possibilities are:
mean : compute the mean of values for points within each bin.
std : compute the standard deviation within each bin.
median : compute the median of values for points within each bin.
count : compute the count of points within each bin.
sum : compute the sum of values for points within each bin.
min : compute the minimum of values for points within each bin.
max : compute the maximum of values for point within each bin.
p_# : compute half the width where a percentile of data is found. Number must be between 0-100 (ex: p_68, p_95, p_99).
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
fig_kwargs (dict, None) – Additional arguments for plt.subplots
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
legend_kwargs (dict, None) – Additional arguments for plt.legend
label1 (str) – Label for catalog 1/2 masses.
label2 (str) – Label for catalog 1/2 masses.
scale1 (str) – Scale of catalog 1/2 masses.
scale2 (str) – Scale of catalog 1/2 masses.
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_zcolor(cat1, cat2, matching_type, log_mass=True, color1=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on input
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
log_mass (bool) – Log scale for mass
color1 (bool) – Use catalog 1 for color. If false uses catalog 2
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
xlabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.mass for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.mass for more info).
fit (optional): fitting output dictionary (see scaling.mass for more info).
plots (optional): fit and binning plots (see scaling.mass for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.mass_zpanel(cat1, cat2, matching_type, redshift_bins=5, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on input with panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
redshift_bins (int, array, int) – Redshift bins to make panels
log_mass (bool) – Log scale for mass
panel_cat1 (bool) – Used catalog 1 for col_panel. If false uses catalog 2
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
panel_kwargs_list (list, None) – List of additional arguments for plotting each panel (using pylab.plot). Must have same size as len(bins2)-1
panel_kwargs_errlist (list, None) – List of additional arguments for plotting each panel (using pylab.errorbar). Must have same size as len(bins2)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
add_label (bool) – Add bin label to panel
label_format (function) – Function to format the values of the bins
label_fmt (str) – Format the values of binedges (ex: ‘.2f’)
xlabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘mass’]/cat2.labels[‘mass’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.mass for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
binned_data (optional): input data for fitting (see scaling.mass for more info).
fit (optional): fitting output dictionary (see scaling.mass for more info).
plots (optional): fit and binning plots (see scaling.mass for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift(cat1, cat2, matching_type, **kwargs)[source]¶
Scatter plot with errorbars and color based on input
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
xlabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
add_bindata (bool) – Plot binned data used for fit (default=False).
add_fit (bool) – Fit and plot binned dat (default=False).
add_fit_err (bool) – Use redshift errors of catalog 2 in fit (default=True).
fit_statistics (str) –
Statistics to be used in fit (default=mean). Options are:
individual - Use each point.
mode - Use mode of catalog 2 redshift distribution in each catalog 1 redshift bin, requires fit_bins2.
mean - Use mean of catalog 2 redshift distribution in each catalog 1 redshift bin, requires fit_bins2.
fit_bins1 (array, None) – Bins for redshift of catalog 1 (default=10).
fit_bins2 (array, None) – Bins for redshift of catalog 2 (default=30).
fit_legend_kwargs (dict, None) – Additional arguments for plt.legend.
fit_bindata_kwargs (dict, None) – Additional arguments for pylab.errorbar.
fit_plt_kwargs (dict, None) – Additional arguments for plot of fit pylab.scatter.
fit_label_components (tuple (of strings)) – Names of fitted components in fit line label, default=(xlabel, ylabel).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
binned_data (optional): input data for fitting, with values:
x: x values in fit (log of values if log=True).
y: y values in fit (log of values if log=True).
y_err: errorbar on y values (error_log if log=True).
fit (optional): fitting output dictionary, with values:
pars: fitted parameter.
cov: covariance of fitted parameters.
func: fitting function with fitted parameter.
func_plus: fitting function with fitted parameter plus 1x scatter.
func_minus: fitting function with fitted parameter minus 1x scatter.
func_scat: scatter of fited function.
func_dist: P(y|x) - Probability of having y given a value for x, assumes normal distribution and uses scatter of the fitted function.
func_scat_interp: interpolated scatter from data.
func_dist_interp: P(y|x) using interpolated scatter.
plots (optional): additional plots:
fit: fitted data
errorbar: binned data
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_density(cat1, cat2, matching_type, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
col (str) – Name of column to be plotted
bins1 (array, None) – Bins for redshift of catalogs 1 and 2 (for density colors).
bins2 (array, None) – Bins for redshift of catalogs 1 and 2 (for density colors).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2)
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
xlabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.redshift for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.redshift for more info).
fit (optional): fitting output dictionary (see scaling.redshift for more info).
plots (optional): fit and binning plots (see scaling.redshift for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_density_dist(cat1, cat2, matching_type, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with scatter and bias panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
col (str) – Name of column to be plotted
bins1 (array, None) – Bins for redshift of catalogs 1 and 2 (for density colors).
bins2 (array, None) – Bins for redshift of catalogs 1 and 2 (for density colors).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
fig_kwargs (dict, None) – Additional arguments for plt.subplots
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2) on main plot.
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
fig_pos (tuple) – List with edges for the figure. Must be in format (left, bottom, right, top)
fig_frac (tuple) – Sizes of each panel in the figure. Must be in the format (main_panel, gap, colorbar) and have values: [0, 1]. Colorbar is only used with add_cb key.
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.redshift for more info).
vline_kwargs (dict, None) – Arguments for vlines marking bins in main plot, used in plt.axvline.
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: dictionary with each ax of the plot.
binned_data (optional): input data for fitting (see scaling.redshift for more info).
fit (optional): fitting output dictionary (see scaling.redshift for more info).
plots (optional): fit and binning plots (see scaling.redshift for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_density_masspanel(cat1, cat2, matching_type, mass_bins=5, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
mass_bins (int, array, int) – Mass bins to make panels
log_mass (bool) – Log scale for mass
panel_cat1 (bool) – Used catalog 1 for col_panel. If false uses catalog 2
bins1 (array, None) – Bins for redshift of catalogs 1 and 2 (for density colors).
bins2 (array, None) – Bins for redshift of catalogs 1 and 2 (for density colors).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2)
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
panel_kwargs_list (list, None) – List of additional arguments for plotting each panel (using pylab.plot). Must have same size as len(bins2)-1
panel_kwargs_errlist (list, None) – List of additional arguments for plotting each panel (using pylab.errorbar). Must have same size as len(bins2)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
add_label (bool) – Add bin label to panel
label_format (function) – Function to format the values of the bins
label_fmt (str) – Format the values of binedges (ex: ‘.2f’)
xlabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.redshift for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.redshift for more info).
fit (optional): fitting output dictionary (see scaling.redshift for more info).
plots (optional): fit and binning plots (see scaling.redshift for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_density_metrics(cat1, cat2, matching_type, **kwargs)[source]¶
Scatter plot with errorbars and color based on point density with scatter and bias panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
col (str) – Name of column to be plotted
bins1 (array, None) – Bins for redshift of catalog 1 and 2.
bins2 (array, None) – Bins for redshift of catalog 1 and 2.
metrics_mode (str) –
Mode to run metrics (default=`diff_z`). Options are:
simple : metrics for values2.
log : metrics for log10(values2).
diff : metrics for values2-values1.
diff_log : metrics for log10(values2)-log10(values1).
diff_z : metrics for (values2-values1)/(1+values1).
metrics (list) –
List of mettrics to be plotted (default=[std.fill, mean]). Possibilities are:
mean : compute the mean of values for points within each bin.
std : compute the standard deviation within each bin.
median : compute the median of values for points within each bin.
count : compute the count of points within each bin.
sum : compute the sum of values for points within each bin.
min : compute the minimum of values for points within each bin.
max : compute the maximum of values for point within each bin.
p_# : compute half the width where a percentile of data is found. Number must be between 0-100 (ex: p_68, p_95, p_99).
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
fig_kwargs (dict, None) – Additional arguments for plt.subplots
ax_rotation (float) – Angle (in degrees) for rotation of axis of binning. Overwrites use of (bins1, bins2) on main plot.
rotation_resolution (int) – Number of bins to be used when ax_rotation!=0.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
xscale (str) – Scale for x/y axis.
yscale (str) – Scale for x/y axis.
fig_pos (tuple) – List with edges for the figure. Must be in format (left, bottom, right, top)
fig_frac (tuple) – Sizes of each panel in the figure. Must be in the format (main_panel, gap, colorbar) and have values: [0, 1]. Colorbar is only used with add_cb key.
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.redshift for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: dictionary with each ax of the plot.
metrics: dictionary with the plots for each metric.
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_dist(cat1, cat2, matching_type, redshift_bins_dist=30, redshift_bins=5, mass_bins=5, log_mass=True, transpose=False, **kwargs)[source]¶
Plot distribution of a cat1 redshift, binned by the cat2 redshift (in panels), with option for cat2 mass bins (in lines).
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
redshift_bins_dist (array, int) – Bins for distribution of the cat1 redshift
redshift_bins (array, int) – Bins for cat2 redshift
mass_bins (array, int) – Bins for cat2 mass
log_mass (bool) – Log scale for mass
transpose (bool) – Invert lines and panels
fig_kwargs (dict, None) – Additional arguments for plt.subplots
shape (str) – Shape of the lines. Can be steps or line.
plt_kwargs (dict, None) – Additional arguments for pylab.plot
line_kwargs_list (list, None) – List of additional arguments for plotting each line (using pylab.plot). Must have same size as len(bins_aux)-1
legend_kwargs (dict, None) – Additional arguments for plt.legend
add_panel_label (bool) – Add bin label to panel
panel_label_format (function) – Function to format the values of the bins
add_line_label (bool) – Add bin label to line
line_label_format (function) – Function to format the values of the bins
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_dist_self(cat, redshift_bins_dist=30, redshift_bins=5, mass_bins=5, log_mass=True, transpose=False, mask=None, **kwargs)[source]¶
Plot distribution of a cat redshift, binned by redshift (in panels), with option for mass bins (in lines). Is is useful to compare with redshift_dist results.
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
cat (clevar.ClCatalog) – Input Catalog
redshift_bins_dist (array, int) – Bins for distribution of redshift
redshift_bins (array, int) – Bins for redshift panels
mass_bins (array, int) – Bins for mass
log_mass (bool) – Log scale for mass
transpose (bool) – Invert lines and panels
fig_kwargs (dict, None) – Additional arguments for plt.subplots
shape (str) – Shape of the lines. Can be steps or line.
plt_kwargs (dict, None) – Additional arguments for pylab.plot
line_kwargs_list (list, None) – List of additional arguments for plotting each line (using pylab.plot). Must have same size as len(bins_aux)-1
legend_kwargs (dict, None) – Additional arguments for plt.legend
add_panel_label (bool) – Add bin label to panel
panel_label_format (function) – Function to format the values of the bins
add_line_label (bool) – Add bin label to line
line_label_format (function) – Function to format the values of the bins
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_masscolor(cat1, cat2, matching_type, log_mass=True, color1=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on input
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
log_mass (bool) – Log scale for mass
color1 (bool) – Use catalog 1 for color. If false uses catalog 2
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
ax (matplotlib.axes, None) – Ax to add plot. If equals None, one is created.
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
add_cb (bool) – Plot colorbar
cb_kwargs (dict, None) – Colorbar arguments
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
xlabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.redshift for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
ax: ax used in the plot.
ax_cb (optional): ax of colorbar
binned_data (optional): input data for fitting (see scaling.redshift for more info).
fit (optional): fitting output dictionary (see scaling.redshift for more info).
plots (optional): fit and binning plots (see scaling.redshift for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_masspanel(cat1, cat2, matching_type, mass_bins=5, log_mass=True, **kwargs)[source]¶
Scatter plot with errorbars and color based on input with panels
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
mass_bins (int, array, int) – Mass bins to make panels
log_mass (bool) – Log scale for mass
panel_cat1 (bool) – Used catalog 1 for col_panel. If false uses catalog 2
add_err (bool) – Add errorbars
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
plt_kwargs (dict, None) – Additional arguments for pylab.scatter
err_kwargs (dict, None) – Additional arguments for pylab.errorbar
panel_kwargs_list (list, None) – List of additional arguments for plotting each panel (using pylab.plot). Must have same size as len(bins2)-1
panel_kwargs_errlist (list, None) – List of additional arguments for plotting each panel (using pylab.errorbar). Must have same size as len(bins2)-1
fig_kwargs (dict, None) – Additional arguments for plt.subplots
add_label (bool) – Add bin label to panel
label_format (function) – Function to format the values of the bins
label_fmt (str) – Format the values of binedges (ex: ‘.2f’)
xlabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
ylabel (str) – Label of x/y axis (default=cat1.labels[‘z’]/cat2.labels[‘z’]).
**fit_kwargs – Other fit arguments (see fit_* paramters in scaling.redshift for more info).
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
binned_data (optional): input data for fitting (see scaling.redshift for more info).
fit (optional): fitting output dictionary (see scaling.redshift for more info).
plots (optional): fit and binning plots (see scaling.redshift for more info).
- Return type
dict
- clevar.match_metrics.scaling.funcs.redshift_metrics(cat1, cat2, matching_type, **kwargs)[source]¶
Plot metrics.
- Parameters
cat1 (clevar.ClCatalog) – ClCatalogs with matching information.
cat2 (clevar.ClCatalog) – ClCatalogs with matching information.
matching_type (str) – Type of matching to be considered. Must be in: ‘cross’, ‘cat1’, ‘cat2’
bins1 (array, None) – Bins for redshift of catalog 1 and 2.
bins2 (array, None) – Bins for redshift of catalog 1 and 2.
metrics_mode (str) –
Mode to run metrics (default=`diff_z`). Options are:
simple : metrics for values2.
log : metrics for log10(values2).
diff : metrics for values2-values1.
diff_log : metrics for log10(values2)-log10(values1).
diff_z : metrics for (values2-values1)/(1+values1).
metrics (list) –
List of mettrics to be plotted (default=[std.fill, mean]). Possibilities are:
mean : compute the mean of values for points within each bin.
std : compute the standard deviation within each bin.
median : compute the median of values for points within each bin.
count : compute the count of points within each bin.
sum : compute the sum of values for points within each bin.
min : compute the minimum of values for points within each bin.
max : compute the maximum of values for point within each bin.
p_# : compute half the width where a percentile of data is found. Number must be between 0-100 (ex: p_68, p_95, p_99).
mask1 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
mask2 (array, None) – Masks for clusters 1(2), must have size=cat1(2).size
fig_kwargs (dict, None) – Additional arguments for plt.subplots
metrics_kwargs (dict, None) – Dictionary of dictionary configs for each metric plots.
legend_kwargs (dict, None) – Additional arguments for plt.legend
label1 (str) – Label for catalog 1/2 redshifts.
label2 (str) – Label for catalog 1/2 redshifts.
scale1 (str) – Scale of catalog 1/2 redshifts.
scale2 (str) – Scale of catalog 1/2 redshifts.
- Returns
info –
Information of data in the plots, it contains the sections:
fig: matplotlib.figure.Figure object.
axes: matplotlib.axes used in the plot.
- Return type
dict