clmm.utils.statistic module
General utility functions that are used in multiple modules
- clmm.utils.statistic.compute_radial_averages(xvals, yvals, xbins, yerr=None, error_model='ste', weights=None)[source]
Given a list of xvals, yvals and xbins, sort into bins. If xvals or yvals contain non-finite values, these are filtered.
- Parameters:
xvals (array_like) -- Values to be binned
yvals (array_like) -- Values to compute statistics on
xbins (array_like) -- Bin edges to sort into
yerr (array_like, None, optional) -- Errors of yvals. Default: None
error_model (str, optional) --
Statistical error model to use for y uncertainties. (letter case independent)
'ste' - Standard error [=std/sqrt(n) in unweighted computation] (Default).
'std' - Standard deviation.
weights (array_like, None, optional) -- Weights for averages. Default: None
- Returns:
mean_x (numpy.ndarray) -- Mean x value in each bin
mean_y (numpy.ndarray) -- Mean y value in each bin
err_y (numpy.ndarray) -- Error on the mean y value in each bin. Specified by error_model
num_objects (numpy.ndarray) -- Number of objects in each bin
binnumber (1-D ndarray of ints) -- Indices of the bins (corresponding to xbins) in which each value of xvals belongs. Same length as yvals. A binnumber of i means the corresponding value is between (xbins[i-1], xbins[i]).
wts_sum (numpy.ndarray) -- Sum of individual weights in each bin.
- clmm.utils.statistic.compute_weighted_bin_sum(xvals, yvals, xbins, weights)[source]
Add yvals * weights in xbins.
- Parameters:
xvals (array_like) -- Values to be binned
yvals (array_like) -- Values to compute statistics on
xbins (array_like) -- Bin edges to sort into
weights (array_like, None, optional) -- Weights for sum.
- Returns:
Sum of yvals * weights in xbins.
- Return type:
numpy.ndarray
- clmm.utils.statistic.gaussian(value, mean, scatter)[source]
Normal distribution.
- Parameters:
value (array-like) -- Values for which to evaluate gaussian.
mean (float) -- Mean value of normal distribution
scatter (float) -- Scatter of normal distribution
- Returns:
Gaussian values at value
- Return type:
numpy.ndarray
- clmm.utils.statistic.make_bins(rmin, rmax, nbins=10, method='evenwidth', source_seps=None)[source]
Define bin edges
- Parameters:
rmin (float, None) -- Minimum bin edges wanted. If None, min(source_seps) is used.
rmax (float, None) -- Maximum bin edges wanted. If None, max(source_seps) is used.
nbins (float, optional) -- Number of bins you want to create, default to 10.
method (str, optional) --
Binning method to use (letter case independent):
'evenwidth' - Default, evenly spaced bins between rmin and rmax
'evenlog10width' - Logspaced bins with even width in log10 between rmin and rmax
'equaloccupation' - Bins with equal occupation numbers
source_seps (array_like, None, optional) -- Radial distance of source separations. Needed if method='equaloccupation'. Default: None
- Returns:
binedges -- array with nbins +1 elements that defines bin edges
- Return type:
numpy.ndarray